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7T ABSTRACT

,Leonard-4982-proposes a design measure which may be used sequentially

to choose the next dose level in a linear logistic quantal response model for

bioassay. His design measure averages t e posterior distribution of the
ev ( 44ec t dLOVIe

effective dose over those _LD values which are regarded as important. In

this evaluation the mode of the design density is used as the next design
CGD rp

point, and it is supposed that all -L- values between -= -60 and -Bir90 are

equally important. After ten initial badly designed observations, it is shown

that only 20 further, well designed, observations are needed to obtain a

design efficiency of about 82%, and an estimated response curve which lies at

a maximum of an estimated 6-bD'points from the true curve, for all i values

lying between -LD-60 and L9 90. If more observations are taken then the

design efficiency increases steadily, but it is difficult to increase the

accuracy of estimation without either taking many more observations, or by

Apushing the design points outside the appropriate region. However, within the

design region, chosen by any recommended procedure, the method promises

excellent robustness, with respect to possible inadequacies in the model,

whilst outlying design points would not provide such robustness.

AMS (MOS) Subject Classifications: 62K99, 62F15

Key Words: Quantal response, Bioassay, Effect dose, Design measure, Posterior
mean, Bayesian extinction

Work Unit Number 4 (Statistics and Probability)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



SIGNIFICANCE AND EXPLANATION

Leonard (1982) proposes a design measure for the quantal response model,

based upon a mixture of posterior distributions of the effective doses. In

this paper the mode of this distribution is evaluated sequentially according

to the criteria of "estimation accuracy" and "design efficiency" which relate

to both good estimation conditional on the model, and good robustness with

respect to deviations from the model. For sequential design points, for ED

values between ED 60 and ED 90, it is shown by simulations that, after an

initial batch of ten badly chosen design points, only 20 further observations

are needed to achieve a design efficiency of 82% and an estimated response

curve which lies at a maximum of an estimated 6 ED points from the true

curve. For more than 30 observations it is necessary to spread out the design

points more, in order to sacrifice some design efficiency for more estimation

accuracy. Further simulati,ns are currently being carried out by Leonard and

Hamada, to investigate this aspect more closely.
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A SMALL SAMPLE EVALUATION OF A BAYESIAN DESIGN METHOD

FOR QUANTAL RESPONSE MODELS

Tom Leonard

1. INTRODUCTION

Consider zero-case responses Y1,...,yn which are independent binary

variables, with

P(Yi =  11e ) = 0 (1 1,...,n). 1 1

Assume the linear logistic model

ai = log i - log(1 -
) = + 81xi  (1.2)

where xl,...,xi will be referred to as "dose levels".

We address the following three problems:

(i) Estimation of the response curve

0+1x x

O(x) = e /(1 + e ) (1.3)

after n observations.

(ii) Choice of the next design point, Xn+l, given Y1,...,yn and

Xl...,Xn, and the sequential choice of Xn+r, given Yl.'..,Yn+r-1

and xl,...,Xn+r1I for r = 1,2,...

(iii) The problem in (ii) but where the results, for values of 6 in (1.3)

lying within specified limits (a,b), are robust against possible

inadequacies of the model in (1.2).

These problems may be tackled as follows:

(i) The response curve in (1.3) will be estimated by the approximation

recommended by Leonard (1982) to the posterior mean value function of
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the curve. This mean value function is vastly superior in terms of

accuracy of estimation to the maximum likelihood estimate of the

response curve, and is primarily responsible for our good practical

results. It is also undoubtedly superior to non-parametric estimates

based upon Dirichlet processes, since the latter are not smooth enough

to reasonably approximate a smooth true response curve, and also depend

upon a number of complicated prior parameter valuea.

(ii) For illustrative purposes it is supposed that the function in (1.3) is

of interest for values of 0 lying between 0.6 and 0.9. At any stage

in the e:-periment, the next design point will be chosen to be the mode

of the design density recommended by Leonard (1982), given all

observations up to that point. This density averages the posterior

densities of the effective closes over LD values 60 to 90. It may be

adjusted to any 0 region of interest.

(iii) The design procedure in (ii) attempts to choose x values such that

the corresponding O(x) values have the best chance of lying between

0.6 and 0.9. Note that

(A) Conditional on the model better estimates of this region of the response

curve may be obtained by taking x points further apart.

However,

(B) Results based upon widely spread x points will not be robust under

inadequacies in the model. Therefore it is sensible to define design

percentage efficiency as the long run percentage of x values such that for

the true curve 0, the corresponding O(x) values lie between 0.6 and 0.9.

A high percentage design efficiency means good estimation and excellent

robustness, whilst a low efficiency could mean excellent estimation

conditional on the model, but bad robustness.
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For an estimate e of the true response c, rve 0, the estimation

accuracy is defined to be

DIFFNLAX max 6 (x) - O(x)I . (1.4)
0.6(6(x)(0.9

The clear objective should be to obtain good estimation a4C uracy whilst

at the same time maintaining high percentage design efficiency. Thore is a

trade-off betw3en estimation accuracy and design efficiency; the objective is

to obtain good estimates of 0 which are also robust against changes in the

model.

2. A SMALL SAMPLE EVALUATION, AND OVERALL CONCLUSICNS

The method described in Section 1 was evaluated based upon a true

response curve taking the linear logistic form in (1.3) with 80 = -4.39 and

8 = 8.79. Owing to properties of the curve, under location and scale

transformations, the choices of 80 and 8I can be made arbitrarily. The

particular choices made ensure that 6(0.5) = 0.5 and 6(0.9) = 0.75.

In each simulation the ten initial x's were taken to be

0,0.05,0.1,0.15,...,0.45 corresponding to 0 values ranging between 0.012 and

0,392. These points are badly designed by intention in order to give worst-

case results. Our estimation accuracies and design efficiencijs could be

noticeably improved by basing the first few choices on sensible reasoning

relative to the practical situation under consideration.

The estimation accuracies for 10 runs, each with 30 further observations

based upon well (sequentially) designed x points, are described in Table 1.
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Table 1: Estimation Accuracies for up to 30 Further Observations

Sample Size 10 15 20 25 30

Run 1 0.05 0.05 0.04 0.03 0.02

Run 2 0.15 0.09 0.07 0.02 0.02

Run 3 0.12 0.08 0.06 0.11 0.06

Run 4 0.11 0.13 0.10 0.09 0.12

Run 5 0.06 0.04 0.02 0.04 0.09

Run 6 0.03 0.01 0.03 0.03 0.02

Run 7 0.15 0.06 0.04 0.03 0.06

Run 8 0.16 0.06 0.04 0.02 0.03

Run 9 0.08 0.08 0.05 0.05 0.09

Run 1.; 0.06 0.11 0.11 0.10 0.10

Overall 0.090 0.071 0.056 0.052 0.061

We see that 20, well designed, observations enable us to estimate the

true percentage response curve 100 8(x) to within under an estimated 6%, of

the true curve, for all values of x such that 60% < 100 O(x) < 90%. This

estit;.ated accuracy is remarkably iow, and is primarily caused by the

particular estimation technique employed, which sensibly compensates for large

standard deviations of the maximum likelihood estimates for 0 and 01

Beyond 20, well designed, observations it is difficult to substantially

improve upon estimation accuracy (together with good design efficiency)

without taking a large number of further observations. For example, runs 3

and 4 were continued for a further 30 observations yieldii.g
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Teble -1: 2stimation Accuracies for up to 50 Further tservations

Sample Size 25 30 35 40 15 50

Run 3 0.11 0.06 0.05 0.08 0.08 0.09

Run 4 0.09 0.12 0.08 0.08 0.08 0.09

Furthe 1rore, for all ten runs, the estimation accuracies do not noticeably

increas, ftez 25 or 30 observations. See the last two columns of Table 1.

Our t. 1 tive recommendations for the practical application of this

procedure are:

(A) Choose up to ten iJtial obt ,rvations as sensibly as possible, by

reference to the practical ttuation under consideration.

(B) Obtain 20-25 fvrther. 11-designed, observations based on the Bayesian

procedure.

(C) Then stop, unless it is %n:en 'ed to prrceed to a sample size of about

100. (In this case, several e.g. 5 new desi points should be chosen at

each time stage. These should b nread out dc-Drding to the percentiles of

the design density.,

The percentage design efficiencies fcr the t6. runs are described in

Table 3.
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Table 3: Percentage Design Efficiencies

Sample Size 10 15 20 25 30

Run 1 90.0 93.3 85.0 96.0 96.7

Run 2 40.0 60.0 70.0 76.0 80.0

Run 3 60.0 73.3 80.0 84.0 86.7

Run 4 40.0 53.3 65.0 72.0 76.3

Run 5 70.0 80.0 85.0 88.0 90.0

Run 6 100.0 100.0 100.0 100.0 100.0

Run 7 60.0 66.7 73.0 80.0 83.3

Run 8 40.0 60.0 70.0 76.0 80.0

Run 9 90.0 86.7 90.0 92.0 93.3

Run 10 90.0 93.3 90.0 92.0 93.3

Overall 68.0% 76.7% 82.0% 85.6% 91.3%

We see that after 20 well-designed observations, 82.0% of the design

points correspond to 0.6 4 6(x) < 0.9 for the true curve. This excellent

efficiency increases to 91.3% after 30 observations.

Therefore, as well as getting good estimation accuracy for small sample

sizes, the results are based upon design points lying in the important region

of the response curve. This promises excellent robustness under changes in

the sampling model, in particular when these changes are outside the region of

interest.
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3. SEQUENTIAL BEHAVIOUR OF DESIGN POINTS

Consider the sequential behaviour of the design points for Run 1. Here

the ten badly chosen design points, discussed at the beginning of Section 2,

yielded the, rather uninformative, responses, 0,0,0,0,0,0,1,0,0,0.

The next 30 design points are described in Table 4.

Table 4: Design Points for Run 1

Designed Design True Response Curve Simulated Response
Observation point (x) y

1 0.84 0.95 1
2 0.70 0.85 1
3 0.64 0.77 1
4 0.60 0.71 0
5 0.70 0.85 1
6 0.66 0.80 1
7 0.64 0.77 0
8 0.70 0.85 1
9 0.68 0.83 1

10 0.68 0.83 1
11 0.66 0.80 1
12 0.64 0.77 1
13 0.62 0.74 1
14 0.62 0.74 1
15 0.62 0.74 1
16 0.60 0.71 1
17 0.60 0.71 0
18 0.62 0.74 1
19 0.60 0.71 4

20 0.60 0.71 1
21 0.60 0.71 0
22 0.62 0.74 0
23 0.64 0.77 1
24 0.62 0.74 0
25 0.64 0.77 1
26 0.64 0.77 1
27 0.62 0.77 1
28 0.62 0.77 1
29 0.62 0.77 1
30 0.62 0.77 1
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The maximum of the badly chosen deeign points is 0.39, but the Bayesian

procedure moves the next point as far away as 0.84. Then oberved "ones" tend

to push the next design point downwards, whilst observed "zeroes tend to push

the design upwards. Zeros create more movement tkAn onesi since these are

required to occur between proportions of 0.1 and 0.4 of the time, so that

their less likely occurrence has greater effect. The corresponding values of

the true response curve move very quickly to the region (0.6, 0.9) and then

stabilize near the middle of this region, The - .ward movement of the

design point, after a positive observation, r-t'es the oisign into a region

where the experiment is likely to be more inftr. v-ve. The general behaviour

of the design points seems to be highly sensibl,).

4. THE POSTERIOR bIWAY!' 1F T

Note that after the 30 designed trials, man 1 . ib14d maximum likelihood

estimates of -5.58 and 10.90, for 8O and 0, ,t it; proximate standard

deviations of 2.15 and 4.17. This result iF. tyyio:l of all ten runs, and

suggests large discrepancies from the true valtaa $0 - -4.39 and 8.79.

Nevertheless, the posterior mean of the respcnas cwrve 'is in close agreement

(estimation accur&zv = 0.02) with the true si"vi.. snce this adjusts the

maximum likelihood estimate of the response cu ,ve to allow for the uncertainty

represented by the standard deviations.

This dramatic improvement when compared with ci ,,ssical procedures should

perhaps be termed "the posterior mean effect."

5. COMPUTER SOFTWARZ

Program BIOYAAM.FOR on the VAX system at MC applies computer simulations

(subroutine PGMGZN.FOR) to the design and estimation procedfres (subroutine
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PGMBIO.FOR) when the design region is between 60% and 90%. Program BIO.FOR

completes the design and estimation procedures when either (i) the design

region is unrestricted, or (ii) the design region comprises any single point

lying between 1% and 99%.
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